38 research outputs found

    optimade-python-tools: a Python library for serving and consuming materials data via OPTIMADE APIs

    Get PDF
    In recent decades, improvements in algorithms, hardware, and theory have enabled crystalline materials to be studied computationally at the atomistic level with great accuracy and speed. To enable dissemination, reproducibility, and reuse, many digital crystal structure databases have been created and curated, ready for comparison with existing infrastructure that stores structural characterizations (e.g., diffraction) of real crystals. Each database will typically have a bespoke, stateless, web-based Application Programming Interface (API); users can submit a query via specially-crafted URLs. Such esoteric and specialized APIs incur maintenance and usability costs upon both the data providers and consumers, who may not be software specialists. The OPTIMADE API specification (Andersen et al., 2020, 2021), released in July 2020, aimed to reduce these costs by designing a common API for use across a consortium of collaborating materials databases and beyond. Whilst based on the robust JSON:API standard (Katz et al., 2015), the OPTIMADE API specification presents several domain-specific features and re- quirements that can be tricky to implement for non-specialist teams. The repository presented here, optimade-python-tools, provides a modular reference server implementation and a set of associated tools to accelerate the development process for data providers, toolmakers and end-user

    Shared Metadata for Data-Centric Materials Science

    Get PDF
    The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on "Shared Metadata and Data Formats for Big-Data Driven Materials Science". We start from an operative definition of metadata, and what features a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them

    Measurements to Elucidate the Mechanism of Thermal and Radiation Enhanced Diffusion of Cesium, Europium, and Strontium in Silicon Carbide.

    Full text link
    Containment of fission products (FP) within the TRISO fuel particle is critical to the success of the very high temperature reactor (VHTR). Over sixty years of experience developing and testing this fuel has yet to identify the mechanism by which several key fission products (cesium, europium, and strontium) escape through intact SiC at temperatures between 900C and 1,300C. A novel diffusion couple was developed that was successful in making the first measurements of fission product diffusion in SiC. This design allows for the isolation of thermal diffusion and investigation of radiation enhanced diffusion using ion irradiation as a simulant for neutron radiation damage. The thermal and radiation enhanced diffusion of cesium, europium, and strontium were measured between 900C and 1,300C. The ion irradiation significantly enhanced the diffusion of all three fission products with enhancement factors ranging from 100x to 1E7x over thermal diffusion. All three fission products exhibits mixed diffusion kinetics between 900C and 1,300C under purely thermal conditions, and between 900C and 1,100C under ion irradiation. This indicates that both bulk and grain boundary diffusion are active mechanisms for fission product release. A defect reaction model indicates that fission product diffusion can occur on both the silicon or carbon sub-lattices. Comparison of cesium diffusion with the literature suggests that the best quality TRISO fuel should exhibit minimal cesium release and that cesium release is a good indicator of TRISO fuel failure.PhDNuclear Engineering and Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120786/1/shyamd_1.pd

    A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis.

    No full text
    Accelerated inorganic synthesis remains a significant challenge in the search for novel, functional materials. Many of the principles which enable "synthesis by design" in synthetic organic chemistry do not exist in solid-state chemistry, despite the availability of extensive computed/experimental thermochemistry data. In this work, we present a chemical reaction network model for solid-state synthesis constructed from available thermochemistry data and devise a computationally tractable approach for suggesting likely reaction pathways via the application of pathfinding algorithms and linear combination of lowest-cost paths in the network. We demonstrate initial success of the network in predicting complex reaction pathways comparable to those reported in the literature for YMnO3, Y2Mn2O7, Fe2SiS4, and YBa2Cu3O6.5. The reaction network presents opportunities for enabling reaction pathway prediction, rapid iteration between experimental/theoretical results, and ultimately, control of the synthesis of solid-state materials
    corecore